HARVEST WEED SEED CONTROL UNIT

Results from year 1

Uhlorn Family Farms

4

What are they?

- Seed Destructors are a mechanical device that attaches to a harvester.
- They take the chaff (Non-Straw) residue and run it through a pulverizer/hammer mill
- These seed destructors provide up to a 99% kill on not only weed seeds, but any crop seed that did not make it into the bulk tank.

OUR RESULTS

Herb Only

Herb + HWSCU HWSCU Only

Year 1

OUR RESULT

Chart Title

Our Results - Year 1.2 49 34 32 6 2 4 HWSCU N. HWSCU + HERB HERB N. HWSCU S. HWSCU + HERB HERB S. N. S. ■22 □23

INFRARED BLUELIGHT TECHNOLOGY

- Research being done by Joan Campbell at the University of Idaho
- Low horsepower requirement compared to impact mills
- Very effective on small seeds
- Effectiveness goes down on larger seeds
 - Wild Oats
 - Goat Grass
- Redesign on light placement to help with larger seed control
- Estimated 3-5 years before commercial units are available

JOAN CAMPBELL-UNIVERSITY OF IDAHO

 \cap

Ω

	Check	300 F	350 F	
	number of plants			
Ryegrass	543	74	0	
Downy brome	471	75	0	
Rattail fescue	269	33	0	
Wild oat	363	218	146	
Prickly lettuce	333	0	0	
Russian thistle	197	0	0	
Kochia	314	0	0	

FINAL THOUGHTS

OUR REGENERATIVE JOURNEY

Brentley Uhlorn- Uhlorn Family Farms

How did we start?

- Ray Archuleta Cover Crop
- Invitation to meet with a World Soybean Yield Record Holding Grower

Moved away from the largest microbe destroyers

Most dry fertilizers

- MAP
- DAP
- Potash
- 16-20-0
- Sulfur***

Anhydrous Ammonia

Went to liquid fertilizers

Bring in gentler, lower salt fertilizers

- First- pH neutral or close to it
- Then look at salt content to pH ratio
 - 3-18-18
 - Most Nachurs products
 - Conklin products
- Plant available nutrients
 - Orthophosphates
 - Potassium Hydroxide, Acetates

Begin experimenting with biologicals

- Nachurs
 - BioK product
 - Ryhzo-Link technology
 - 7 Beneficial Bacterial Species

Trials with heavy biologicals

- Biovante
 - Biological Company out of Missouri
 - Products
 - BioMate
 - Contains the 4 types of sugar-Fructose, Dextrose, Maltose, Glucose plus Lactobacillus and Azotobacter
 - BioRed
 - Bacterial Based
 - BioFlex
 - Fungal Based (Swamp Water)

NO MORE NEED FOR FUNGICIDES

- Started using nutrient based products
 - PikSi Dust
 - Potassium Silica
 - Forms a protective barrier over the leaf surface that Fungal Spores can't penetrate
 - Longer protective period than standard fungicides
 - 4-6 weeks
 - Since nutrient based, pathogens can't become resistant
 - Same price

Found a local company that understands our climate

- Soilcraft
 - Working more with biologicals tailored to our environment
 - Biostimulants
 - Live biological products
 - Denver Black- agronomist

Compost teas and removal of fertilizers

- Tom Poole
 - Toured Tom's farm and was amazed at the difference between his soils and the neighbors right across the road
 - Was a simple dairy compost soaked in water in a tote
 - Eventually added a fish tank aerator
- Bought a specialized compost brewer
 - Ran Vermiculture and Fungal dominated composts
- Started to reduce and eliminate fertilizers
 - Reduce Nitrogen Rates by 5-10%
 - Virtually Eliminate P and K
- Compost Extraction Machine
- Start taking our first SAP Samples

Biological Seed Inoculants

- BioMinerals Technologies
 - Utah
 - Broad Spectrum seed inoculant
 - Natural "Fungicides"
 - Natural "Insecticides"

Bring in more expertise

- PNDSA Advance Soil Health Workshops
 - Jill Clapperton
 - Joel Williams
 - John Kempf
- Apical Labs
- Ag Enterprise
- BioFarming Group
 - Ty Meyer and the Spokane Conservation District
 - Other Members
- AEA
- Mike Nestor- Sterling Valley
- Brian Bohnhoff- Precision Bio
- Dave

REDUCE RELIANCE ON CHEMICALS

- R.O. System- Improved Efficiency of Herbicides
- More intense SAP testing- Can we kill or weaken weeds with nutrition
- Seed Terminator- Can we reduce seed bank pressure

R.O Water and Plant nutrition

- What is R.O. Water
 - Reverse Osmosis
 - Reverse Osmosis is a technology that is used to remove a large majority of contaminants from water by pushing the water under pressure through a semipermeable membrane.
 - This semi-permeable membrane has a pore size of around 0.0001 microns, effectively only allowing the small water molecules through and catching any larger molecules of contaminants, organic materials or even salt

R.O. WATER AND PLANT NUTRITION

- Natural nutrients and minerals are removed
- Fertility/Hard Water reactions
 - Reduces Tie up
- Fertilizers are stabilized in the water solution

R.O. Water and Plant Nutrition using SAP Sampling

- Like a blood test for crops
- Snapshot of nutrient in play at the time of sampling
- Measurement of excesses, deficiencies, and imbalances of nutrients within plant
 - Can indicate problems 2-3 weeks before visual symptoms occur
 - Nutrient requirements to address imbalances are smaller when caught early

R.O. WATER AND PLANT NUTRITION USING SAP SAMPLING

- Labs
 - Apical Labs
 - New Age Labs
 - Crop Health Labs
 - Nova Crop
- Measurement of over 20 nutrients and plant health indicators

ANALYTE		and the second second		ANALYTE	and the second second		
PRIMARY INDICATORS	VALUE	GRADIENT	% DIFF	PRIMARY INDICATORS	VALUE	GRADIENT	% DIFF
pH New	6.22	-0.01	-0.16%	EC New (mS/cm)	7.96	-0.73	-9.17%
pH Old	6.23	0.01	0.16%	EC Old (mS/cm)	8.69	0.73	8.40%
Total N New (ppm)	1958.01	-3.06	-0.16%	Total Sugars New (%)	0.89	-0.97	-108.99%
Total N Old (ppm)	1961.07	3.06	0.16%	Total Sugars Old (%)	1.86	0.97	52.15%
MAJOR CATIONS	PPM	GRADIENT	% DIFF	MAJOR ANIONS	PPM	GRADIENT	% DIFF
NH4-Ammonium New	161.45	96.84	59.98%	NO3-Nitrate New	34.73	-83.50	-240.43%
NH4-Ammonium Old	64.61	-96.84	<mark>-149.88%</mark>	NO3-Nitrate Old	118.23	83.50	70.63%
K-Potassium New	3356.34	-474.09	-14.13%	P-Phosphorous New	463.82	302.09	65.13%
K-Potassium Old	3830.43	474.09	12.38%	P-Phosphorous Old	161.73	-302.09	-186.79%
SECONDARY CATIONS	PPM	GRADIENT	% DIFF	SECONDARY ANIONS	PPM	GRADIENT	% DIFF
Mg-Magnesium New	391.69	18.92	4.83%	S-Sulfur New	797.93	517.04	64.80%
Mg-Magnesium Old	372.77	-18.92	-5.08%	S-Sulfur Old	280.89	-517.04	-184.07%
Ca-Calcium New	1003.99	-975.83	-97.20%	CI-Chloride New	899.10	614.20	68.31%
Ca-Calcium Old	1979.82	975.83	49.29%	CI-Chloride Old	284.90	-614.20	-215.58%
Na-Sodium New	56.57	-46.37	-81.97%	Si-Silicon New	9.61	-9.96	-103.64%
Na-Sodium Old	102.94	46.37	45.05%	Si-Silicon Old	19.57	9.96	50.89%
MINOR CATIONS	PPM	GRADIENT	% DIFF	MINOR ANIONS	PPM	GRADIENT	% DIFF
Fe-Iron New	7.75	1.34	17.29%	I-lodine New	4.15	0.86	20.72%
Fe-Iron Old	6.41	-1.34	-20.90%	I-Iodine Old	3.29	-0.86	-26.14%
Mn-Manganese New	3.97	-3.35	-84.38%	B-Boron New	5.82	2.77	47.59%
Mn-Manganese Old	7.32	3.35	45.77%	B-Boron Old	3.05	-2.77	-90.82%
Zn-Zinc New	8.22	6.04	73.48%	Mo-Molybdenum New	0.00	0.00	0.00%
Zn-Zinc Old	2.18	-6.04	-277.06%	Mo-Molybdenum Old	0.00	0.00	0.00%
Cu-Copper New	1.12	0.77	68.75%	Al-Aluminum New	3.65	-1.33	-36.44%
Cu-Copper Old	0.35	-0.77	<mark>-220.00%</mark>	Al-Aluminum Old	4.98	1.33	26.71%
Co-Cobalt New	0.53	0.02	3.77%	Se-Selenium New	1.12	0.26	23.21%
Co-Cobalt Old	0.51	-0.02	-3.92%	Se-Selenium Old	0.86	-0.26	-30.23%

NEW LEAF / OLD LEAF RATIOS (% DIFFERENCE)

NEW LEAF / OLD LEAF RATIOS (% DIFFERENCE)

OULITVAR.

1110LNIA (#17020)

L'ARTINI.

NOTE: This report and data herein are copyright protected and cannot be reproduced, distributed or promoted without written authorization from or direct reference to Apical Crop Science LL

1.15

ANALYTE		an dear		ANALYTE			
PRIMARY INDICATORS	VALUE	GRADIENT	% DIFF	PRIMARY INDICATORS	VALUE	GRADIENT	% DIFF
pH New	5.94	-0.12	-2.02%	EC New (mS/cm)	10.42	0.16	1.54%
pH Old	6.06	0.12	1.98%	EC Old (mS/cm)	10.26	-0.16	-1.56%
Total N New (ppm)	3345.28	511.51	15.29%	Total Sugars New (%)	1.45	0.42	28.97%
Total N Old (ppm)	2833.77	-511.51	-18.05%	Total Sugars Old (%)	1.03	-0.42	-40.78%
MAJOR CATIONS	PPM	GRADIENT	% DIFF	MAJOR ANIONS	PPM	GRADIENT	% DIFF
NH4-Ammonium New	730.12	540.17	73.98%	NO3-Nitrate New	1.22	-95.61	-7836.89%
NH4-Ammonium Old	189.95	-540.17	-284.37%	NO3-Nitrate Old	96.83	95.61	98.74%
K-Potassium New	3827.36	292.03	7.63%	P-Phosphorous New	402.91	277.17	68.79%
K-Potassium Old	3535.33	-292.03	-8.26%	P-Phosphorous Old	125.74	-277.17	-220.43%
SECONDARY CATIONS	PPM	GRADIENT	% DIFF	SECONDARY ANIONS	PPM	GRADIENT	% DIFF
Mg-Magnesium New	807.14	305.50	37.85%	S-Sulfur New	770.60	513.20	66.60%
Mg-Magnesium Old	501.64	-305.50	-60.90%	S-Sulfur Old	257.40	-513.20	<mark>-199.38%</mark>
Ca-Calcium New	4361.38	1176.61	26.98%	CI-Chloride New	674.09	254.03	37.68%
Ca-Calcium Old	3184.77	-1176.61	-36.94%	CI-Chloride Old	420.06	-254.03	-60.47%
Na-Sodium New	59.88	2.39	3.99%	Si-Silicon New	32.03	8.69	27.13%
Na-Sodium Old	57.49	-2.39	-4.16%	Si-Silicon Old	23.34	-8.69	-37.23%
MINOR CATIONS	PPM	GRADIENT	% DIFF	MINOR ANIONS	PPM	GRADIENT	% DIFF
Fe-Iron New	8.51	1.88	22.09%	I-lodine New	2.46	2.46	100.00%
Fe-Iron Old	6.63	-1.88	-28.36%	I-Iodine Old	0.00	-2.46	0.00%
Mn-Manganese New	14.20	3.81	26.83%	B-Boron New	11.38	7.07	62.13%
Mn-Manganese Old	10.39	-3.81	-36.67%	B-Boron Old	4.31	-7.07	<mark>-164.04</mark> %
Zn-Zinc New	4.82	2.78	57.68%	Mo-Molybdenum New	0.40	0.11	27.50%
Zn-Zinc Old	2.04	-2.78 <mark>-</mark>	-136.27%	Mo-Molybdenum Old	0.29	-0.11	-37.93%
Cu-Copper New	1.30	0.51	39.23%	Al-Aluminum New	3.49	-1.18	-33.81%
Cu-Copper Old	0.79	-0.51	-64.56%	Al-Aluminum Old	4.67	1.18	25.27%
Co-Cobalt New	0.50	0.00	0.00%	Se-Selenium New	0.34	-0.24	-70.59%
Co-Cobalt Old	0.50	0.00	0.00%	Se-Selenium Old	0.58	0.24	41.38%

NEW LEAF / OLD LEAF RATIOS (% DIFFERENCE)			NEW LEAF / OLD LEAF RATIOS (% DIFFERENCE)				
K New/Old	Mg New/Old	Ca New/Old	P New/Old	S New/Old	CI New/Old		
10	100	50	.500	200	100		

NOTE: This report and data herein are copyright protected and cannot be reproduced, distributed or promoted without written authorization from or direct reference to Apical Crop Science L

ANALYTE				ANALYTE			
PRIMARY INDICATORS	VALUE	GRADIENT	% DIFF	PRIMARY INDICATORS	VALUE	GRADIENT	% DIFF
pH New	6.00	-0.27	-4.50%	EC New (mS/cm)	3.50	-4.23	<mark>-120.86%</mark>
pH Old	6.27	0.27	4.31%	EC Old (mS/cm)	7.73	4.23	54.72%
Total N New (ppm)	6475.95	3259.63	50.33%	Total Sugars New (%)	2.07	1.42	68.60%
Total N Old (ppm)	3216.32	-3259.63	-101.35%	Total Sugars Old (%)	0.65	-1.42	-218.46%
MAJOR CATIONS	PPM	GRADIENT	% DIFF	MAJOR ANIONS	PPM	GRADIENT	% DIFF
NH4-Ammonium New	213.92	-33.27	-15.55%	NO3-Nitrate New	4.51	4.51	100.00%
NH4-Ammonium Old	247.19	33.27	13.46%	NO3-Nitrate Old	0.00	-4.51	0.00%
K-Potassium New	2549.32	82.90	3.25%	P-Phosphorous New	228.75	114.62	50.11%
K-Potassium Old	2466.42	-82.90	-3.36%	P-Phosphorous Old	114.13	-114.62	<mark>-100.43%</mark>
SECONDARY CATIONS	PPM	GRADIENT	% DIFF	SECONDARY ANIONS	PPM	GRADIENT	% DIFF
Mg-Magnesium New	1364.43	182.51	13.38%	S-Sulfur New	1048.58	524.04	49.98%
Mg-Magnesium Old	1181.92	-182.51	-15.44%	S-Sulfur Old	524.54	-524.04	-99.90%
Ca-Calcium New	8569.68	3375.47	39.39%	CI-Chloride New	1384.73	625.03	45.14%
Ca-Calcium Old	5194.21	-3375.47	-64.99%	CI-Chloride Old	759.70	-625.03	-82.27%
Na-Sodium New	54.46	2.47	4.54%	Si-Silicon New	22.74	-17.51	-77.00%
Na-Sodium Old	51.99	-2.47	-4.75%	Si-Silicon Old	40.25	17.51	43.50%
MINOR CATIONS	PPM	GRADIENT	% DIFF	MINOR ANIONS	PPM	GRADIENT	% DIFF
Fe-Iron New	6.42	-8.19	-127.57%	I-lodine New	0.00	0.00	0.00%
Fe-Iron Old	14.61	8.19	56.06%	I-Iodine Old	0.00	0.00	0.00%
Mn-Manganese New	13.41	1.09	8.13%	B-Boron New	9.65	2.45	25.39%
Mn-Manganese Old	12.32	-1.09	-8.85%	B-Boron Old	7.20	-2.45	-34.03%
Zn-Zinc New	3.96	-2.11	-53.28%	Mo-Molybdenum New	0.52	0.07	13.46%
Zn-Zinc Old	6.07	2.11	34.76%	Mo-Molybdenum Old	0.45	-0.07	-15.56%
Cu-Copper New	1.82	-3.19	-175.27%	Al-Aluminum New	4.73	-6.16	-130.23%
Cu-Copper Old	5.01	3.19	63.67%	Al-Aluminum Old	10.89	6.16	56.57%
Co-Cobalt New	0.43	-0.08	-18.60%	Se-Selenium New	0.00	0.00	0.00%
Co-Cobalt Old	0.51	0.08	15.69%	Se-Selenium Old	0.00	0.00	0.00%

NEW LEAF / OLD LEAF RATIOS (% DIFFERENCE)			NEW LEAF / OLD LEAF RATIO	NEW LEAF / OLD LEAF RATIOS (% DIFFERENCE)			
K New/Old	lew/Old Mg New/Old Ca Nev		P New/Old	S New/Old	Cl New/Old		
5	20	100	200	100	100		

Eliminate More

- Chemical Seed Treats
- More Soil Applied Fertilizers
- More Herbicides
- Insecticides???
 - Canola
 - Brix
 - Boron
 - Bees

Calcium is the Coach

Nitrogen is the Backup Quarterback

Silica is the Run Game

Phosphorus is the Medical Assistant

Make Calcium the Driver

Others are the O-Line and Defense

Starting Quarterback- Boron

Sulfur is the Assistant Coach

Microbes are the Referee

Make Calcium the Driver

Where does our future lead?

- Organic???
- Regenerative Organic?
- Elimination of Weeds and Pathogens through Biology and Nutrition
- Mimic Mother Nature

Things for us to figure out

- Cover Crops
 - Do we need them?
 - What do we plant?
 - When do we plant?
 - How do they integrate into the PNW's cropping system?
 - How do we terminate?
 - Livestock
 - Cows?
 - Sheep?
 - Goats?
 - Pigs?
 - Chickens?

Things for us to figure out cont.

- Sap tests and foliar feeding
 - Key Timings
 - Weather delays
 - Can we further reduce our inputs
- Time/Hours
- Specialized Markets
 - Nutritionally Dense Foods
 - Identity Preservation

How to get started

How to get started continued

- Nitrogen Stabilizers
- Do you really need that fungicide?
 - Other products out there
- Do you really need that Insecticide?
 - Other products out there
 - Spend your dollars differently, not more dollars
- Find an agronomist/soil health consultant who understands this stuff
- Add Carbon!!!

How to get started continued

- Pick 1 or 2 practices to start with.
 - You don't need to do them all.
 - Which one do you start with?
 - Whichever is going to be simplest to bring into your existing system
 - Which one is going to pay for itself the fastest?
- Start with 1 or 2 fields
 - Pick a good field and an average to poorer field
- Reduce Nitrate Fertilizers
- Ask for help

WORDS OF ADVICE

- Patience
 - Biological Change is a slow process
 - You will not see change in 1 year
 - Plan on 3-5 years
- Time consuming
- Paradigm Challenging
- A weed is natures band-aid

SNOWBALL EFFECT

THANKS