

AGRONOMY Michael Nestor, CCA

Regenerative Ag Agronomist

Where Fungi's and Seeds Get Together!!!

Douglas Poole, Regenerative Farmer

Double P Ranch

- Sandy Loam soil in a 6"-9" annual rainfall zone
- Dryland fallow small grains system including winter and spring canola, winter and spring wheat, oats, sunflowers, winter and spring triticale, millet and hemp
- Cattle integration utilizing cover cropped ag fields and native range
- Implementing a fallow elimination plan

60 & 10

60 & 10

Paradigm Shift

Са

Fertilizer Inputs

Mg

Mo

This Photo by Unknown Author is licensed under CC BY

RESEARO

Introduction

 N is a major, if not the single largest, factor in profitable wheat production in the PNW

short-term economics

Average nitrogen supply requirements

- Unit N supply (<u>soil+fertilizer</u>) requirement for different market classes of wheat
 - Soft white winter and spring: 2.7 lb N/bushel
 - Hard red winter: 3.0 lb N/bushel
 - Hard red spring: 3.6 lb N/bushel
 - Hard white winter/spring: 3.2 lb N/bushel

Where does the nitrogen go?

- 2.7 lbs nitrogen supply per bushel soft white
- At 10% grain protein, grain contains 1 lb N/bu
- 2.7 1 = <u>1.7 lb N/bushel left in field</u>
 - Straw = ~0.40 lb N/bu \rightarrow organic matter
 - Remainder (~50%, or 1.3 lb N/bu) → future residual N in the soil test and available to subsequent crop
 - Loss?

Post-harvest yield and protein assessment

- Low yield, low protein
 - Low N available; severe under-fertilization or N loss
- Low yield, high protein (low test weight)
 Stress, over-fertilization; high residual N left in soil
- High yield, low protein
 - Target met for soft white; under-fertilized for hard wheat protein goal?
- High yield, high protein
 - Over-fertilized soft white wheat?; target met for hard wheat

Critical Nutrient Levels for Wheat Tissue Test (Whole Plant, Seedling before Jointing)

Nutrient	Critical Range (% Nutrient in Dry Matter)
N	4-5%
Ρ	0.2-0.5%
к	2.5-5.0%
Ca	0.2-1.0%
Mg	0.14-1.0%
s	0.15-0.65%
Fe	0.003-0.02% (30-200ppm)
Mn	0.002-0.015% (20-150ppm)
Zn	0.0018-0.007% (18-70ppm)
Cu	0.00045-0.0015% (4.5-15ppm)
в	0.00015-0.0004% (1.5-4ppm)
Мо	0.00001-0.0002% (0.1-2.0ppm)

Courses Compling Diant tiques for Nutriant Analysis, C.J. Coburgh, C.D. Les, and D. Dearon, University of Kentuclay Coorderative Extension

THE LAW OF THE MINIMUM: Liebig's Barrel Metaphor

A plant's potential is limited if even 1 growth factor is deficient or missing

Fertilizer Inputs

Old Ways

Albrecht Daniel Thaer (1752-1828)

• Albrecht Thaer 1809-1812 was Sprengel's mentor, he published 4 books on the Humus theory. He collected data from one of the first known research farms dedicated to manure usage, crop rotation, and humus.

 Humus theory states plants live on Humus extracts containing simple water compounds of C, H, O, and N (Si and K too)

• The theory claims fertilizer substances like salt and lime were considered useful for plant growth, but only because they promoted the decomposition of humus and the consumption of organic matter in the soil solution.

Sprengel- Focused on humus. The opinion at that time dating back to Aristotle, was that humus is the immediate source of plant food. And that it was assimilated by means of the mysterious.

Sprengel 1826-1828- Concluded that the increase of plant growth, which is often observed when humus is applied to a soil. Does not result from the humus itself but from the mineral elements that are either present in it or are taken up from the soil as a consequence of the presence of the humus.

Carl Sprengel (1787-1859)

1826 Disproved humus theory in Agronomy

1828 Published theory of the Minimum and 20 elements that are considered plant nutrients

Sprengel and Liebig were colleagues

1840 Justus Von Liebig published the law of the minimum

Liebig used Sprengel's doctrines to publish the law of the minimum. Not Friends

The International Community of Agronomists created Sprengel-Liebig Medal

"If you can't explain it simply, you don't understand it well enough."

Albert Einstein

Fertilizer Inputs

Bacterial Intracellular Entry Zone What is the hypothesized 'rhizophagy cycle'? (Organic acids, carbohydrates not produced or may be absorbed by root meristem. This triggers bacteria to become intracellular in meristem cells) Definition: The rhizophagy Bacterial Exit Zone cycle is a process whereby (Bacteria stimulate elongation plants obtain nutrients from of root hairs and exit at the tips Bacterial Biofilm Formation Zone bacteria that alternate of hairs where walls are thin. (Root exudates: butyric, acetic, between an intracellular Bacteria reform cell walls once lactic acids, carbohydrates stimulate endophytic phase and a freeoutside root hair.) living soil phase. Bacteria formation of biofilms containing acquire soil nutrients in the walled bacterial cells.) free-living soil phase; nutrients are extracted from bacteria oxidatively in the Bacteria in root parenchyma intracellular endophytic near root tip meristem phase. (DAB and aniline blue stain). iróda cap meristem Nutrients Extracted from Bacterial L-forms Through Oxidation by Superoxide Produced by NADPH Oxidases on Root Cell Plasma **Bacteria Enter Root** Membranes Cells (Periplasmic Space) **Carrying Nutrients** Bacteria Exit Root Hairs From Soil RHIZOPHAGY Exhausted of Nutrients CYCLE Bacteria emerging from root hair tip of millet seedling. **Bacteria Recharge with Nutrients** in the Rhizosphere

Isotopic N tracking experiments using tall fescue grass suggest that 30% of the nutrients absorbed by roots could come from bacteria involved in the rhizophagy cycle (see White et al. 2015).

James White; Rutgers University (11/20/2017)

Nutrient Efficiency From Soil Application

Nitrogen40-50%Phosphorous10-20%Potassium40%

This Photo by Unknown Author is licensed under <u>CC BY-SA-NC</u>

Ballinger and Bennett, 1986; Richardson, 2008; Chen et al, 2008

Foliar vs. Soil Comparison...

<u>Foliar n</u>	utrient Rate	Soil applied rate equivalen
Nitrogen	1#/ac	10-15#'s
Phosphate	1#/ac	20#'s
Potassium	1#/ac	27#'s
Calcium	1#/ac	35-40#'s
Magnesium	1#/ac	28#'s
Sulfur	1#/ac	5-7#'s
Zinc	1#/ac	12#'s
Boron	1#/ac	30#'s
Manganese	1#/ac	20-25#'s
Iron	1#/ac	25-100#'s
Copper	1#/ac	35-38#'s

Information provided by Dr. Carl Spiva. A & L Laboratories. Modesto, California

Reducing Synthetic Fertilizers for the Microbes!

Weaning off nitrogen fertilizer

Year 1: reduce by20%Year 2: reduce by another30%Year 3: reduce by another50%

Example 100#....80#....50#....25# Maintenance of 25#/ac soil, foliar, or split app

Test, Test, Test....make adjustments when <u>Needed</u>

Nitrogen reduction journey

began variable rate/zone nutrient applications	began transitioning applied nutrients from in furrow to stream jet application	Began reducing applied Nitrogen by 10-20% year (earn the privilege to foliar)	Eliminated ALL synthetic in furrow applications, replaced by humic, molasses, chicken litter, calcium and other biologicals	Transitioned from stream jet applications to foliar. All foliar's split applied with one application in the fall and one in the spring
2013	2015	2015	2020	2021

Timings and Rates: Winter Wheat and Winter Canola

- Seeding Dates:
 - Canola late August
 - Wheat Early September
- First Foliar: Pre-Winter Antifreeze
 - Canola Mid to late October 4-6 leaf stage. 2-5lbs. N/acre
 - Wheat Mid to late October (Feeks 3-4) 2-5lbs. N/acre

18

26 27

20

SI

- Second Foliar: Spring
 - Canola Mid April (prebolting). 5-10lbs. N/acre
 - Wheat Mid April (Feeks 4-7). 5-10lbs. N/acre

TOTAL NUTRIENT DIGESTION ANALYSIS REPORT

4475

Lab #

	Nutrient Results		Nutrients, Lbs/A	Fertilizer Equivalent, lbs of Fert*	
Nutrient	Value	Units	Value	Value	Reference Fertilizer
Carbon	0.65	% C	11736	19560	60% C
Nitrogen	0.081	% N	1458	3170	46-0-0
Phosphorus	0.060	% P	1071	4719	11-52-0 at 22.7% P
Potassium	0.250	% K	4503	8727	0-0-60 at 51.6% K
Calcium	0.465	% Ca	8364	38017	Gypsum-22% Ca
Magnesium	0.396	% Mg	7135	67951	K-Mag-10.5% Mg
Sulfur	0.007	% S	128	533	AMS-24% S
Zinc	49.35	ppm Zn	88.8	254	ZnSO4-35% Zn
Iron	20354.92	ppm Fe	36639	183194	FeSO4-20% Fe
Manganese	443.57	ppm Mn	798	2576	MnSO4-31% Mn
Copper	23.81	ppm Cu	42.9	171	CuSO4-25% Cu
Boron	12.16	ppm B	21.9	199	Borax-11% B
Sodium	0.025	% Na	450		
Molybdenum	0.04	ppm Mo	0.1	0.2	NaMoO4-39% Mo
Aluminum	11835.56	ppm Al	21304		
C:N Ratio	8.0				
Devieway Comme				*I hs of fertilizer needed	to be equal to the of soil nutrient/

Reviewer Comments

C:N Ratio-Effect on soil Microbes.....

8:1 = Not Much Going On

- 10:1 = Barely Functioning
- 16:1 = Microbes Start to Reproduce
- 18:1 = Mycorrhizal Activity Starts
- 30:1 = Compost Worm Castings
- 30:1 = Humans Animals

Double P Ranch

Rawlins

PLFA Test

PLFA Soil Microbial Community Analysis

Functional Group Biomass & Diversity

Functional Group Diversity Ir	ss, Phospholipia F idex	atty Acid (PLF	A) ng/g	923 0.6
	Total Biomass	Diversity	Rating	
	< 500	< 1.0	Very Poor	
	500+ - 1000	1.0+ - 1.1	Poor	
	1000+ - 1500	1.1+ - 1.2	Slightly Below Average	
	1500+ - 2500	1.2+ - 1.3	Average	
	2500+ - 3000	1.3+ - 1.4	Slightly Above Average	
	3000+ - 3500	1.4+ - 1.5	Good	
	3500+ - 4000	1.5+ - 1.6	Very Good	
	> 4000	> 1.6	Excellent	
Functional Group	_		Biomass, PLFA ng/g	% of Total Biomass
Total Bacteria			222.64	24.11
Gram (+)			222.64	24.11
Actinomycetes			65.34	7.08
Gram (-)			0.00	0.00
Rhizobia			0.00	0.00
Total Fungi			0.00	0.00
Arbuscular Mycorrhizal			0.00	0.00
Saprophytes			0.00	0.00
Protozoa			0.00	0.00
Undifferentiated			700.71	75.89

Infinity I-4 Microscope

4k Digital Camera

Epi-Fluorescence Module

Soil Food Web

Carbon to Nitrogen Ratio

Bacteria 5:1

Fungi 20:1

Protozoa 30:1

Nematodes 100:1

Humans 30:1

Lettuce 30:1

Wood 500:1

Soil Balancing Methods....

Plant Biochemical Sequences

- 1. <u>Boron</u>-which activates
- 2. <u>Silcon</u>, which carries all other nutrients, starting with
- 3. Calcium, which binds

4. <u>Nitrogen</u> to form amino acids, DNA and cell division. Amino acids form proteins such as chlorophyll and tag trace elements, especially

5. <u>Magnesium</u>, which transfers energy via

6. Phosphorus to

7. Carbon to form sugars which to were

8. Potassium carries them. This is the basis of plant growth

Let's Talk Brix....

10% Brix in Plants is an Indicator of 50% less Nitrogen is Required

Because the Carbon, Oxygen, and Hydrogen are Present

> Weeds get Smaller and Compete Less Against Cash Crop

After You Dry Plant Biomass- 80% Water- H₂O

The Remaining 20% is.....

47% Carbon 43% Oxygen 4% Hydrogen 3% Nitrogen 3% Soil Minerals

Sucrose- C₁₂-H₂₂-O₁₁

Fructose- C₆-H₁₂-O₆

 $Glucose - C_6 - H_{12} - O_6$

C (42.0%-47.0%)

H (6.0%)

Critical Nutrient Levels for Wheat Tissue Test (Whole Plant, Seedling before Jointing)

Nutrient	Critical Range (% Nutrient in Dry Matter)	
Ν	4-5% 40,00-50,000 ppm	
Р	0.2-0.5% 2,000-5,000 ppm	
к	2.5-5.0% 25,000-50,000 ppm	
Ca	0.2-1.0% 2,000-10,000 ppm	
Mg	0.14-1.0% 1,400-10,000 ppm	
s	0.15-0.65% 1,500-6,500 ppm	
Fe	0.003-0.02% (30-200ppm)	
Mn	0.002-0.015% (20-150ppm)	
Zn	0.0018-0.007% (18-70ppm)	
Cu	0.00045-0.0015% (4.5-15ppm)	
в	0.00015-0.0004% (1.5-4ppm)	
Мо	0.00001-0.0002% (0.1-2.0ppm)	

Courses Compling Diant tiques for Nutriant Analysis, C.J. Coburgh, C.D. Les, and D. Dearon, University of Kantuals, Cooperative Extension

Winter Wheat

PPM Requirements

Potassium	230,000-280,000ppm
Calcium	80,000-86,000ppm
Magnesium	20,000-24,000ppm
Sodium	750-800ppm
Ammonium Nitrogen	20,000-25,000ppm
Nitrate Nitrogen	45,000-50,000ppm
Chloride	90,000-110,000ppm
Sulfur	20,000-25,000ppm
Phosphorous	40,000-45,000ppm

Winter Canola

PPM Requirements

Potassium	290,000-320,000ppm
Calcium	140,000-150,000ppm
Magnesium	25,000-30,000ppm
Sodium	3,000-3,500ppm
Ammonium Nitrogen	30,000-35,000ppm
Nitrate Nitrogen	77,000-85,000ppm
Chloride	60,000-65,000ppm
Sulfur	55,000-60,000ppm
Phosphorous	50,000-70,000ppm

Observations and results

- Yields:
 - All fields exceeded farm average by at least 15%
 - Two canola fields (600 acres) and 6 wheat fields (1,500 acres) exceeded farm average by 35%
- Inputs:
 - Overall nutrition costs reduced by 15%
- Anecdotal observations:
 - Crop vigor in the fall exceeded previous years
 - Weed and pest pressures were significantly lower
 - Brix readings usually several points higher than neighboring fields

Hartline Spring Wheat Hard White 12% Protein

Worm Casting Faster Emergence- May 9th

Terraxa Seed Treatment Plus Expensive Phos Starter

Hartline Spring Wheat Hard White 12% Protein Worm Casting Faster Emergence- May 9th Sap Sampling -June 1st

Terraxa Seed Treatment Plus Expensive Phos Starter

Hartline Spring Wheat Hard White 12% Protein Worm Casting Faster Emergence- May 9th Sap Sampling -June 1st Regular Tissue Testing- June 30th

Terraxa Seed Treatment Plus Expensive Phos Starter

Hartline Spring Wheat Hard White 12% Protein Worm Casting Faster Emergence- May 9th Sap Sampling -June 1st Regular Tissue Testing- June 30th Regular Tissue Testing –July 14th

Terraxa Seed Treatment

Plus Expensive Phos Starter

Naked Seed Trial Hartline Spring Wheat Hard White 12% Protein Worm Casting Faster Emergence- May 9th Sap Sampling -June 1st Regular Tissue Testing- June 30th Regular Tissue Testing –July 14th

Terraxa Seed Treatment Plus Expensive Phos Starter

> Field #02 129 bu/ac 16% Protein 57# Test Weight 221 Falling Numbers 160 #'s of Nitrogen Applied

Worm Casting Extract Side by Side

2 Bushels Better

Field #11 123 bu/ac 12.53% Protein 57# Test Weight 280 Falling Numbers 5#'s of Nitrogen Applied + Micro's

Questions?

Thank you!