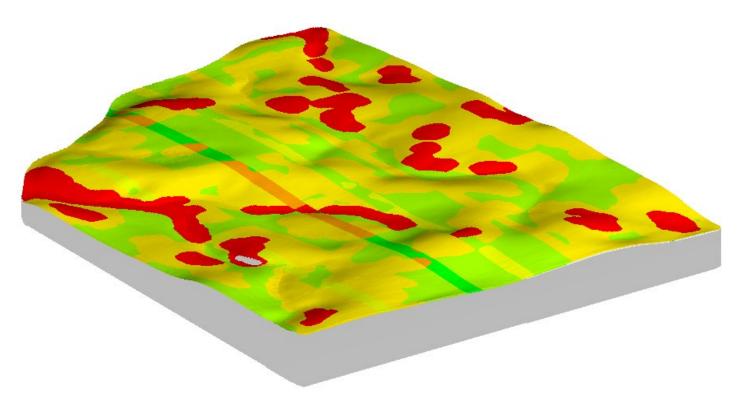


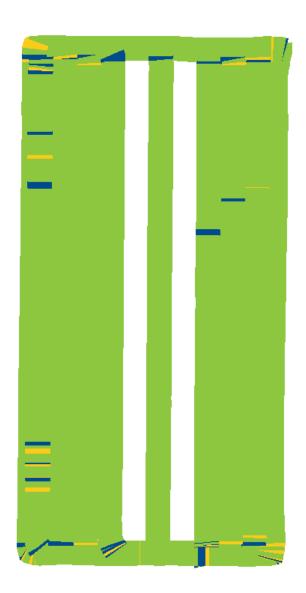
# Why Are We Sitting Here Today?

- Started with wanting to maximize fertilizer Inputs
  - Adopted Variable Rate fertilizing 6 years ago
  - Reduced N and Seed in shallow ground, increased N in High Production
- Desire to build better soils by reduced tillage / no-till
  - Healthy soils cycle nutrients more efficiently
  - Healthy soils are more efficient with moisture

- Variable Rate
  - N, P, Seed




- Lots of soil and tissue sampling to identify true crop needs
  - Want to make educated decisions....NOT throw darts at a wall
  - Nutrient timing for best ROI




| Analysis            | Units | Level<br>Found | Rating    |  |  |  |  |
|---------------------|-------|----------------|-----------|--|--|--|--|
| Organic Matter      | %     | 7.4            | Very High |  |  |  |  |
| Nitrogen            |       |                |           |  |  |  |  |
| Surface<br>Nitrate  | lbs   | 23.4           |           |  |  |  |  |
| Sub Nitrate         | lbs   | 74             |           |  |  |  |  |
| Total Nitrate       | lbs   | 96.9           |           |  |  |  |  |
|                     |       |                |           |  |  |  |  |
| Surface<br>Nitrate  | ppm   | 13.0           |           |  |  |  |  |
| Sub Nitrate         | ppm   | 13.62          |           |  |  |  |  |
| Phosphorus          |       |                |           |  |  |  |  |
| Bray P1             | ppm   | 34.4           | Very High |  |  |  |  |
| Potassium           |       |                |           |  |  |  |  |
| Ammonium<br>Acetate | ppm   | 459.3          | Very High |  |  |  |  |
| Calcium             |       |                |           |  |  |  |  |
| Ammonium<br>Acetate | ppm   | 1437.4         | Low       |  |  |  |  |
| Magnesium           | ppm   | 136.5          | Low       |  |  |  |  |
| Zinc                | ppm   | 1.4            | Medium    |  |  |  |  |
| Manganese           | ppm   | 31.2           | Very High |  |  |  |  |
| Iron                | ppm   | 70.4           | Very High |  |  |  |  |
| Conner              | nnm   | 0.9            |           |  |  |  |  |

| Analysis -<br>Haney Extract | Units | Level<br>Found | Rating       |  |  |
|-----------------------------|-------|----------------|--------------|--|--|
| HT3 24 Hour CO2<br>Burst    |       | 50.6           |              |  |  |
| VAST                        | %     | 23.0           |              |  |  |
| Nitrogen                    |       |                |              |  |  |
| KCI Nitrate                 | lbs   | 23.4           |              |  |  |
| KCI Ammoniacal              | lbs   | 30.6           |              |  |  |
| Slan Test                   | ppm   | 56.3           |              |  |  |
| C:N Ratio                   |       | 10.2           |              |  |  |
| Organic N<br>(WEON)         | lbs   | 8.0            |              |  |  |
| Inorganic N                 | lbs   | 54.0           |              |  |  |
| Mac WEON                    | lbs   | 8.0            |              |  |  |
| WEOC                        | ppm   | 188.1          |              |  |  |
| Total Est N-<br>Release     | lbs   | 54.9           |              |  |  |
| Phosphorus                  |       |                |              |  |  |
| Total P H3A                 | ppm   | 20.1           | Medium       |  |  |
| P H3A (Inorganic)           | ppm   | 15.8           |              |  |  |
| P H3A (Organic)             | ppm   | 4.3            |              |  |  |
| Available P2O5              | lbs   | 38.5           |              |  |  |
| P Saturation                | %     | 6.5            | High         |  |  |
| Potassium                   |       |                |              |  |  |
| НЗА                         | ppm   | 172.2          | Very<br>High |  |  |

- Strip trials combining tissue sampling with yield data
  - VR management
  - Product Evaluation





- Product Substitution
  - Foliar Amino Acids instead of Urea or 32% UAN
  - Molasses to reduce herbicide flash
  - Humic Acid instead of nitrogen stabilizer
  - Biological replacement for fungicide
  - Biological nitrogen replacement
  - Prebiotic soil stimulants

### Where Are We Headed?

- Continue to reduce synthetic inputs
  - Through soil health
  - Biologicals
  - Foliar feeding
- Keep increasing nutrient use efficiency
- Constant refinement of current practices
  - VR
  - Better nutrient timing





# Why Are We Here?

- It's the only thing we know
- Started No-Tilling to help mitigate compaction & crusting in the tight Winchester soils
- Want to increase soil health in any way possible
  - Healthy soils are more efficient at cycling nutrients and more resistant to disease
- Seeking highest **NET** profit, not **GROSS** profit

- Started as No-Till with conventional Fert, Chem, Seed
- Bio-Stimulants were first step to cut synthetics & cost while also building soil health by removing salt + other crap
- Liming followed shortly to address acidity
  - Tribal Lime (very coarse)
  - Beet Lime (high in metals + high freight)
  - Grangeville Ag Lime Project (The good stuff)
- Low salt and high efficiency fert products
  - Spoon feeding vs Bulk loading



- Emissions System
  - Recycles tractor exhaust by injecting into ground for a carbon source and biostimulant
  - Further reduction in synthetic fertilizer & seed treat



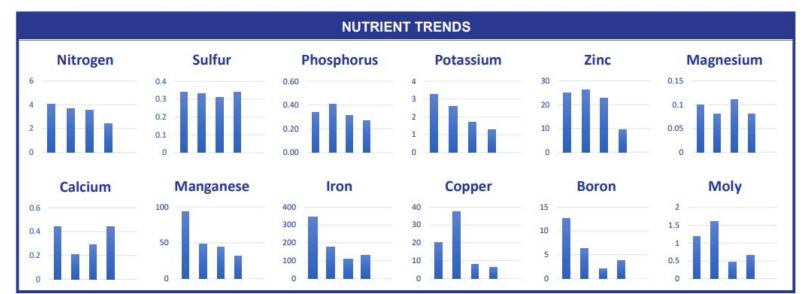




- Seed Treat Elimination
  - Substituting for other stimulants/biology on seed
- Implementation of livestock & cover crops has helped kick things into gear
  - Still working on quantifying gains
- Have started to implement an organized sampling program
  - Product evaluation and informed decision making
- What weve learned so far....
  - Cu A little goes a LONG way
  - B Horribly low across the board
  - Zn Always needed
  - Foliar stimulants Reduced herbicide flash, better weed kill, disease reduction



GROWER: Eric Hasselstrom


FIELD:

ZONE ID: (509) 432-4791

**BRIAN BOHNHOFF** 

CROP: Winter Wheat Brian@PrecisionbioNW.com

| DATA COLLECTION |                     |        |         |       |        |        |      |         |         |         |          |           |           |           |           |           |         |         |
|-----------------|---------------------|--------|---------|-------|--------|--------|------|---------|---------|---------|----------|-----------|-----------|-----------|-----------|-----------|---------|---------|
| SAMPLE<br>DATE  | CROP STAGE          | N<br>% | \$<br>% | N:S   | P<br>% | K<br>% | N:K  | Mg<br>% | Ca<br>% | Na<br>% | B<br>ppm | Zn<br>ppm | Mn<br>ppm | Fe<br>ppm | Cu<br>ppm | Al<br>ppm | CI<br>% | Mo<br>% |
| 5/22/23         | Tillering           | 4.02   | 0.34    | 11.82 | 0.34   | 3.25   | 1.24 | 0.1     | 0.44    | 0.005   | 12.54    | 24.88     | 93.12     | 346.8     | 19.97     | 305.8     |         | 1.18    |
| 6/10/23         | Jointing            | 3.7    | 0.33    | 11.21 | 0.41   | 2.59   | 1.43 |         | 0.21    | 0.004   | 6.36     | 26.19     | 48.08     | 176.2     | 37.58     | 105.7     |         | 1.61    |
| 6/25/23         | Heading & Flowering | 3.52   | 0.31    | 11.35 | 0.31   | 1.71   | 2.06 | 0.11    | 0.29    | 0.003   |          | 22.9      | 44        | 107.7     | 8.02      | 38.2      |         | 0.46    |
| 7/15/23         | Heading & Flowering |        | 0.34    | 7.06  | 0.27   |        | 1.88 |         | 0.44    | 0.004   | 3.78     |           | 31.49     | 129.8     | 6.09      | 44.74     |         | 0.65    |
|                 |                     |        |         |       |        |        |      |         |         |         |          |           |           |           |           |           |         |         |



### Where Are We Headed?

- 0 synthetics!
- Only pushing buttons on micros + stimulants where needed
- Quantify nutrient density for niche market penetration